
QualiPSo
Quality Platform for Open Source Software

IST- FP6-IP-034763

Deliverable A1.D1.1.3
Report on Problem Scope and Definition

about OSS License Compatibility

Thomas F. Gordon
Fraunhofer FOKUS, Berlin

Due date of deliverable: 31/10/2009

Actual submission date: dd/mm/yyyy

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

This work is partially funded by EU under the grant of IST-FP6-034763.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 1 of 31

Change History

Version Date Status Author (Partner) Description

01.01.10 15.06.10 Tom Gordon Minor modifications to the
executive summary,
abstract and introduction

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 2 of 31

EXECUTIVE SUMMARY

 This Qualipso report surveys some of the legal issues which can arise when
multiple software components, licensed with different Open Source licenses, are
combined into collective or derivative works. A concrete scenario is used to
illustrate legal issues which need to be considered by the developers of Open
Source software. The basic concepts of copyright law are explained, insofar as
they are relevant for license compatibility issues. The kinds of legal sources are
surveyed which need to be taken into consideration and interpreted when
analysing license compatibility issues, including legal principles, constitutional law,
statutory copyright and contract law, case law, and various international treaties.
Finally, a brief overview of legal reasoning and argumentation is provided,
showing how the resolution of Open Source license compatibility issues, like all
legal issues, is a creative, theory-construction process which cannot be fully well-
defined and thus cannot be fully automated. Our next task will be to investigate
whether methods from the field of Artificial Intelligence and Law can be applied to
build tools which help developers to construct, explore and compare legal theories
when analysing Open Source licensing issues.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 3 of 31

Document Information

IST Project
Number

FP6 – 034763 Acronym QualiPSo

Full title Quality Platform for Open Source Software

Project URL http://www.qualipso.org

Document URL

EU Project officer Charles MacMillan

Deliverable Number A1.D1.1.3 Title Report on Problem Scope and Definition

about OSS License Compatibility

Work package Number 1,3 Title Compatibility

Activity Number A1 Title Legal Issues

Date of delivery Contractual 31/10/2009 Actual /10/2009

Status Version 1.0, dated 9/10/2009 final 

Nature Report  Demonstrator  Other 

Dissemination
Level

Public  Consortium 

Abstract
(for
dissemination)

This Qualipso report surveys some of the legal issues which can arise
when multiple software components, licensed with different Open Source
licenses, are combined into collective or derivative works. A concrete
scenario is used to illustrate legal issues which need to be considered by
the developers of Open Source software. The basic concepts of copyright
law are explained, insofar as they are relevant for license compatibility
issues. The kinds of legal sources are surveyed which need to be taken
into consideration and interpreted when analysing license compatibility
issues, including legal principles, constitutional law, statutory copyright and
contract law, case law, and various international treaties. Finally, a brief
overview of legal reasoning and argumentation is provided, showing how
the resolution of Open Source license compatibility issues, like all legal
issues, is a creative, theory-construction process which cannot be fully
well-defined and thus cannot be fully automated. Our next task will be to
investigate whether methods from the field of Artificial Intelligence and Law
can be applied to build tools which help developers to construct, explore
and compare legal theories when analysing Open Source licensing issues.

Keywords

Authors (Partner) Thomas F. Gordon (Fraunhofer FOKUS)

Responsible
Author

Thomas F. Gordon Email Thomas.gordon@fokus.fraunhofer.de

Partner Fraunhofer
FOKUS

Phone

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 4 of 31

 TABLE OF CONTENTS

 EXECUTIVE SUMMARY...3

 TABLE OF CONTENTS...5

1 INTRODUCTION...6

2 SCENARIO..9

3 LICENSE CONCEPTS AND ISSUES...11

4 SOURCES OF LAW..17

5 LEGAL REASONING AND ARGUMENTATION..25

6 CONCLUSION...30

 REFERENCES ...31

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 5 of 31

1 INTRODUCTION

In this Qualipso report we examine some legal issues which can arise when
multiple software components, licensed with different Open Source licenses, are
combined into collective or derivative works. Some reciprocal licenses, such as
the GPL, require derivative works to be licensed under the same license. Clearly if
multiple components are subject to different reciprocal licenses of this kind, it may
be legally impossible to create a derivative work from all these components, since
the license of each such component requires the same license, and no other, to
be used for the entire derivative work.

Such restrictive reciprocal Open Source licenses, interpreted literally, run the risk
of fragmenting Open Source software into separate islands, one for each such
reciprocal license, making it much more difficult to share software and requiring a
wasteful duplication of effort to develop comparable components for each license.

One way to overcome this problem is to interpret the reciprocity conditions of
licenses in such a way as to allow derivative works to be licensed using any
license which is compatible with the terms and conditions of the original license of
each component, rather than just the same, identical license. This approach
would raise at least two legal issues: 1) May the original license be substituted by
a compatible one? And 2) Are the two different licenses in fact sufficiently
compatible?

Another way to overcome this problem may be to use some works subject to
reciprocal licenses in ways which do not legally create derivative works. The issue
then becomes: What is the precise legal meaning of “derivative work”? What kinds
of uses count as creating derivate works and which ones do not? A well-known
but unresolved example of this legal issue concerns the question whether linking
to a library of code creates a derivative work or only a collective work. And would
it make a difference whether the library is dynamically linked, rather than statically
linked?

Legal issues, not only these legal issues, cannot be answered definitely outside
the context of specific legal cases in specific jurisdictions. Open Source software
is copied, modified and distributed throughout the world, in particular via the
Internet, but there is no single, globally applicable copyright or contract law. There
are a growing number of Open Source licenses, each with their own terms and
conditions. Existing Open Source licenses, such as the GPL, change over time,
with new versions being issued over time. The terms and conditions of licenses
need to be interpreted against the background of the relevant governing law, such
as the copyright law of a particular country. There are significant differences
between Common Law jurisdictions, such as the United Kingdom and the United
States, and Civil Law jurisdictions such as France or Germany. Which law is
governing can depend on the citizenship or residence of the licensor or licensee,
the location of the claimed infringement of the terms of the license, or the terms
and conditions of the license itself. The relevant laws of these jurisdictions also
change over time. If the law of several jurisdictions is applicable, some method of
resolving conflicts among these laws is required. To the extent that courts have
interpreted relevant laws in previous cases, these court decisions will need to be
taken in to account. The decisions of courts in different jurisdictions may diverge

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 6 of 31

on some legal issues, and typically are not binding on courts in other jurisdictions.
There may be international treaties to consider, such as the 1886 Berne
Convention for the Protection of Literary and Artistic Works, the 1952 Universal
Copyright Convention, or the 1994 Agreement on Trade Related Aspects of
Intellectual Property Rights (TRIPS) administered by the World Trade
Organization (WTO). Some licenses may also be contracts, requiring the
application of contract law in addition to copyright law. The law of contracts also
varies from jurisdiction to jurisdiction. And there may be other international
agreements to consider such as the 1980 United Nations Convention on
Contracts for the Sale of Goods (CISG).

A further source of uncertainty is caused by the lack of a common language or
terminology. There are 23 official languages in the European Union alone. Each
country has its own culture, language and history, against which courts will
interpret the text of statutes, licenses and contracts, even when these are written
in English. There is no global ontology of legal concepts.

Due to this complexity, it cannot be our goal to try to answer any of these legal
issues in the abstract here. Our goal is more limited, to try to more clearly define
the problem and scope of Open Source license compatibility issues. What kinds of
legal issues can arise in the context of the uses cases of interest to developers of
Open Source software when combining software components subject to different
licenses? What legal sources need to be taken into account when trying to
analyse these legal issues? What kinds of legal reasoning, argumentation and
problem-solving methods are relevant when making use of these legal sources to
analyse these issues? In a later report we will then use this information to survey
the state-of-the-art of computational models of legal reasoning and
argumentation, from the field Artificial Intelligence and Law, to try to assess
whether methods are available which can be applied in software tools for helping
developers to analyse and understand license compatibility issues of their own
projects.

The remainder of this report is organized as follows. Section 2 presents a more
concrete scenario, to help make the legal issues clearer and to serve as a
background for identifying use cases for software tools for assisting developers
with Open Source license compatibility issues. Section 3 introduces the legal
concepts and issues of interest in greater detail, by explaining the concept of a
chain of title, noting the difference between a bare license and a contract,
discussing sublicensing issues, contrasting academic and reciprocal Open Source
licenses, discussing the distinction between collective and derivative works and
explaining the relevance of these concepts and issues for analysing license
compatibility issues. Section 4 surveys some of the legal sources which need to
be taken into consideration and interpreted when analysing license compatibility
issues, including legal principles, constitutional law, statutory copyright and
contract law, case law, and various international treaties. Section 5 provides a
brief overview of legal reasoning and argumentation, showing how legal problem
solving is a creative, theory-construction process which cannot be fully well-
defined as is thus cannot be fully automated, not even when using heuristic-
search methods from Artificial Intelligence. In the law, there is never a uniquely
right answer to some legal issue. Good arguments can always be made on both
sides of any issue. Deciding legal issues requires good judgement, not just good

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 7 of 31

logic. This nature of legal reasoning leads to some necessary uncertainty and risk
which cannot be entirely eliminated. This is as true for Open Source software
development as for any other activity regulated by law. Section 6 concludes with a
summary of the main results of this report. A bibliography of references is included
in the appendix.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 8 of 31

2 SCENARIO

To help make the Open Source license compatibility issues more concrete and
comprehensible, this section presents an overview of the main components of a
real Open Source project, currently being negotiated, which will develop an
“argumentation toolbox” for facilitating public debates on policy issues at a
European scale. Figure 1 shows the planned components of the system, along
with the Open Source components upon which they depend. The licenses of the
components used by the toolbox are shown in parentheses. When multiple
licenses are listed for a component, the licensee is free to choose among these
licenses.

The details of the planned argumentation toolbox are not important for us here,
expect to note that the system is representative of many 3-tiered, client-server
applications for the World-Wide-Web. It consists of three layers: a presentation
layer, application logic layer and a database layer. The presentation layer will be
implemented in PHP, Java, and JavaFX. The Java code for the presentation layer
uses the Google Web Toolkit (GWT), which generates JavaScript and HTML
code, which are interpreted by a JavaScript engine, such as TraceMonkey and a
HTML renderer, respectively. All the presentation code will run in a Web browser,
such as Firefox, which provides a HTML renderer and a JavaScript runtime
environment. The application logic layer uses an eParticipation platform, called
Gov2DemOSS, which in turn is based on the Joomla content management

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 9 of 31

Figure 1: Argumentation Toolbox Component Dependencies

system. Joomla is implemented in PHP and depends on the Apache web server.
The application logic of the various argumentation tools are implemented in Java
and Clojure. Both of these languages are compiled into bytecode which runs on a
Java Virtual Machine (JVM), such as HotSpot. The database layer uses a MySql
relational database. The JVM, Apache web server and MySql database run a
Linux server. The web browser runs on a client platform, which these days could
be some mobile device, not only a conventional desktop computer. The client
platform is not shown in the dependency diagram.

Several of the components are based on standards with multiple implementations,
including HTML, JavaScript (actually ECMAScript), and the JVM. The
dependency diagram shows specific implementations for these components, but
in principal these components should be easily replaceable by other
implementations of the relevant standards. Since the license conditions of each
implementation may vary, our discussion of licensing issues will be based on the
licenses of these particular implementations.

Some caveats may be in order. The argumentation toolbox as it has been
presented here is only for the purpose of illustrating some Open Source license
compatibility issues. We do not claim that the description of the system is
complete or that all dependencies or their relevant licenses have been made
explicit. And keep in mind that the argumentation toolbox is likely to change
significantly during the course of the project, which will not begin until 2010.

Notice that four different Open Source licenses are used: the Gnu General Public
License (GPL), the Eclipse Public License (EPL), the Apache License, and the
PHP License.1 Moreover, one component, the JavaFX runtime, currently uses a
proprietary license from Sun Microsystems. The GPL is the license used most
frequently, by 9 of the 14 components used by the toolbox, but it is not quite clear
whether all of these components use the same version of the GPL. This could be
discovered with further research. The Firefox web browser allows the license to
choose between the GPL, the Lesser General Public License (LGPL) and the
Mozilla Public License (MPL).

1Moreover, there is a risk that another license may apply to some subcomponent of a component,
which might have been overlooked by the licensor of the component.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 10 of 31

3 LICENSE CONCEPTS AND ISSUES

Let us now try to use the above scenario to obtain a better understanding of some
basic software licensing concepts and issues. The license of each component
grants exclusive intellectual property rights of the licensor, the owner of the
software, to the licensee, subject to the conditions of the license. The intellectual
property rights regulated by copyright law include the rights to copy, modify and
distribute the original work owned by the licensor. (The owner need not be the
author of the work, since copyrights can be assigned to others.) The works
protectable by copyright are the “original works of authorship fixed in any tangible
medium of expression, from which they can be perceived, reproduced, or
otherwise communicated, either directly or with the aid of a machine or device.”
(17 U.S.C. § 102)2 In the case of software, the work includes both the source code
and the object code, as well as any documentation. Not covered by copyright are
the algorithms or other ideas embodied by the software. Ideas are protected, if at
all, only by patents. Copyright protects the expression of ideas in a perceivable
medium. Copyright does however extend to cover translations. Thus, the
translation of a computer program into another programming language is
presumably a protected act of copying requiring permission of the owner of the
copyright.

A modification of an original work is called a derivative work. The modifications of
the derivative work are owned by the person who made the modifications. Let us
assume the author of the modifications is a licensee of the original work.
(Otherwise the modifications would have been an illegal infringement of the
copyright of the original author.) The author of the modifications may license the
modifications, since he owns them, to third parties. In this new license, the original
work the author of the modifications will be the licensor and the third party will be
a licensee. A sequence of modifications to a work, by several authors, creates a
chain of title, where each author in the chain owns part of the work resulting at the
end of the chain. Informally, we speak of moving ‘upstream’ and ‘downstream’
along a chain of title, as we move temporally backwards and forward, respectively,
along the sequence of modifications to the work. As shown in Figure 1, modifying
several prior original works can result in multiple, branching chains of title, forming
a tree or, more generally, a directed network of derivations of works.

While the author of a derivative work is the owner of his modifications to the
original work, the license of the original work may be subject to conditions which
restrict the terms and conditions of licenses of these modifications to third parties.
In particular, some Open Source software licenses, called reciprocal licenses,
such as the GPL, require the modifications to be licensed under the same terms
and conditions as the license of the original work. Actually this reciprocity
requirement is even stronger. Not only must the terms and conditions of the
license have the same meaning, reciprocal licenses require further that the
modifications to be licensed using another instance of the same license template,
using the exact same language as the license of the original work. (The distinction
between a license template and a license, which can be an instance of such a
template, is discussed below.) Reciprocal licenses are sometimes called copyleft
licenses, which is a play on words emphasizing the supposedly leftist political

2Section 102 of Title 17 of the United States Copyright Act
QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 11 of 31

agenda of the Free Software Foundation, which authored the GPL. Critics of this
agenda have their own rhetoric and like to call reciprocal licenses “viruses” which
“infect” software which is derived from Open Source software using reciprocal
licenses. But whatever one’s political preferences may be, in its important to keep
in mind that reciprocal licenses are just ordinary copyright licenses which
copyright owner can chose to exercise their exclusive rights to control the
copying, distribution, and modification of their intellectual property. Reciprocal
licenses are in no way subversive of copyright law, but rather are a means of
exercising rights protected by copyright law. Open Source licenses which do not
have this reciprocity condition are called academic licenses, because one of the
first and most popular academic license, the Berkeley Software Distribution
license (BSD), was written by an academic institution, the University of California,
Berkeley.

Whether or not the author of the modifications may license the entire derivative
work to third parties, rather than just his own modifications, without the original
work, depends on whether the initial license gives him the right to sublicense the
original work. If not, third parties will have to obtain two licenses, one from the
author of the original work and one from the author of the modifications. This is
not typically a problem for Open Source licenses, since all the necessary licenses
can be distributed along with the derivative work. Some Open Source licenses,
including the BSD and Apache licenses, are not sublicensable. The leading Open
Source license, the GPL, is not clear about sublicensing. A license which allows
sublicensing will typically place conditions on the terms of the sublicense, usually
requiring the terms and conditions of the sublicense to be the same as the original
license.

The term ‘license’ is often used ambiguously to mean both the terms and
conditions of a license template, such as the GPL, as well as the particular license
granted by a particular licensor to a particular licensee for a particular work. Thus,
strictly speaking, even when the same template license is used for a sublicense,
such as the GPL, there are two licenses involved, one between the licensor and
licensee of the first license, and one between the licensor and licensee of the
second license, where the licensee of the first licensee is the licensor of the
sublicense. This state of affairs is illustrated in Figure 2. When some license for a
component of a collective or derivative work is not sublicensable, a template
license distributed along with the derivative or collective work may in fact
represent a number of instances of the license, with the owner of each component
subject to a license which is not sublicensable remaining the licensor of the
component with respect to downstream licensees.

The argumentation toolbox example illustrates two legal issues faced by the
developers of Open Source software:

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 12 of 31

Figure 2: A Sublicense

• What license options are available for each component and for the toolbox
as a whole?

• Since components used by the system are subject to several different
licenses, how can all of the required components be distributed together, or
otherwise made available to users, without violating the terms and
conditions of the licenses, in particular the ‘copyleft’ condition of reciprocal
licenses such as the GPL?

Let’s take a deeper look at the policy modelling component. It depends on the
Clojure compiler, which uses the Eclipse Public License (EPL), and the Google
Web Toolkit (GWT), which uses version 2 of the Apache License. These
components in turn both make use of the Java Virtual Machine (JVM), licensed
using the GPL, and the some operating system. Let’s assume Linux is used,
which of course also license using the GPL. The EPL and the GPL are both
reciprocal licenses. If the policy modelling component is a derivative work of both
Clojure and the JVM, then the policy modelling component would have to be
licensed using both of these licenses, which may not possible if their reciprocity
conditions are interpreted literally, since they both require the same license, the
EPL and the GPL respectively, to be applied to derivative works. If this is indeed
required, could this requirement be met by giving licensees of the policy modelling
tool an opportunity to choose between the EPL and GPL, that by using a dual
license scheme? Or are the reciprocity conditions stricter, requiring the software to
be published using the same license, while offering no alternative license?

If the policy modelling tool is a derivate work, might the reciprocity condition of the
GPL be satisfied by publishing the tool using the EPL, or vice versa? Although the
GPL and EPL are not identical licenses, are their terms and conditions perhaps
sufficiently compatible so as to be able to satisfy the reciprocity conditions of
either license? The EPL is somewhat less restrictive than the GPL, in that it allows
the object code of the modifications to the original work to be licensed under a
proprietary license, i.e. one which is not Open Source, so long as the source code
of the modifications, if published, is licensed using the EPL. This would seem to
be a significant relaxation of the terms and conditions of the GPL, and speaks
against the EPL being construed as a license which is compatible with the GPL.
But even if the terms and conditions of the EPL were full equivalent in meaning
with the GPL, both the EPL and the GPL are quite clear about requiring the
source code of modifications to be published using the exact same license, not
simply one with the same meaning. The EPL states that “a copy of this Agreement
must be included with each copy of the Program”, where the “Program” is the
derived work. And Version 3 of the GPL states that the derived work “must carry
prominent notices that it is released under this license” and requires the “entire
work”, including the modifications, to be licensed “under this License to anyone
who comes into possession of a copy”.

Can a license legally restrict the terms and conditions under which modifications
owned not be the licensor but rather the licensee are published? To analyse this
question, it may be necessary, depending on the governing law of the jurisdiction,
to distinguish between bare licenses and licenses which are also contracts.3 A
bare license gives the licensee permission to exercise the exclusive rights of the
3In some jurisdictions, such as France, all licenses are contracts and the concept of a bare license
is not recognized.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 13 of 31

licensor. In the case of copyrights, these include the rights to copy, distribute and
modify the original work owned by the licensor. A license can place conditions on
a licensee when exercising the rights of the licensor, but can a bare license
restrict the right of the licensee to exercise his own exclusive rights to the original
works he, the licensee, creates? With a bare license, only the licensor makes
promises, namely to allow the licensee to exercise the exclusive rights of the
licensor under certain conditions. But the licensee of a bare license makes no
promises regarding his own rights. The situation is different if the license is a
contract. A contract is an agreement in which the parties make promises to each
other, where rights are transferred in both directions. Contract law is very liberal
regarding the kinds of promises which may be made between the parties, and
there seems no reason to suppose a promise by the licensee to publish any
derivative works under the same license would not be enforceable. However, in
order for a license to become a binding contract, certain conditions have to met,
which vary from jurisdiction to jurisdiction. In Common Law countries, such as the
UK and the US, a license contract typically requires an offer by the licensor to be
accepted by the licensee, and for something of value, called consideration to be
mutually exchanged in both directions between the parties. It can be problematical
to prove that all three of these conditions have been met in particular cases. If an
Open Source program is distributed via the Internet, some means of assuring that
people who download the software are made aware of the terms and conditions of
the offer and have to do something to express their subjective acceptance of
these terms and conditions, may be necessary. This is the reason that when
downloading software on the Internet, the license is often first displayed and one
is required to click some box to explicitly express acceptance of the license,
before the software can be downloaded. But what if the licensee obtained the
software from some other source, for example from a friend or colleague? Just as
problematic is the question of consideration. Since Open Source software is
typically offered free of charge, what consideration flows from the licensee to the
licensor? Would a promise to publish derivative works under the same license be
sufficient consideration?

All of these issues are relevant only for derivative works. But is the policy
modelling tool a derivative work of either of the Clojure compiler or the JVM?
Clojure is a compiler for a new programming language for the JVM. Part of the
policy modelling tool will be written in the Clojure language. But the bytecodes
produced by the compiler are plain JVM bytecodes, exactly as if the program had
been written in Java. For the sake of argument, let us assume that the Clojure
compiler is not used at runtime, but only when compiling the source code of the
policy modelling tool to create an executable program for the JVM. Thus the
compiler, which is the component subject to the EPL, need not, in principal, be
distributed with program. However the program also makes use of the Clojure
runtime and libraries. It would be very inconvenient for users if the runtime and
libraries could not be distributed with the program and needed to be downloaded
separately. These libraries and runtime are also intellectual property subject to
copyright law, and are also licensed using the EPL. Thus, running the argument
modelling tool requires libraries licensed under the EPL to be linked with the JVM
runtime licensed under the GPL. Can this be done without violating the reciprocity
conditions of both licenses? The Free Software Foundation, which authored the
GPL, claims that linking a program to a library licensed by the GPL requires the

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 14 of 31

reciprocity condition of the GPL to be applied to the program, meaning that, in
their view, such a program must also be licensed under the GPL. Would it make a
difference if the policy modelling tool is not distributed together with the Clojure
runtime and libraries or the JVM? What if the user of the argumentation tool would
have to download and install the these components separately from the policy
modelling tool and would link them himself when running the program? What if the
source or object code of the policy modelling tool is only made available only as
part of some kind of network service, such as a web service, so that the program
is used by sending messages to the tools over the network, perhaps using a
custom protocol? Would providing such a web service count as a publication or
distribution which requires the policy modelling tool, as a derived work, to be
published as Open Source software, since it uses, on the server, GPL licensed
software, such as Linux and the JVM?

But is the standpoint of the Free Software Foundation regarding linking legally
correct? Does merely linking a program to a library create a derivative work, or
would distributing the program together with the libraries only result in a collective
work, not subject to reciprocity condition? After all, neither the source code nor the
object code of library library is modified by linking other code to it, anymore than
including two separate programs on one disk modifies these programs, or linking
one web page to another, via a URL, modifies the referenced page. If a web page
is licensed using a reciprocal license, would any page which linked to it also be
subject to the same license? To make another analogy, imagine publishing a
scientific article via print media using a reciprocal license, such as one of the
reciprocal Creative Commons licenses4. Can you imagine another scientific article
which ‘links’ to the first via a reference or citation being subject to the reciprocity
condition and also having to use the same license? Whatever the position o the
Free Software Foundation regarding how to interpret the GPL, it is the courts
alone who have the legal authority to decide whether or not a particular use of
licensed software creates a derivative work. And courts will decide this issue on a
case-by-case basis against the background of their own legal system.

Some Open Source licenses, but not the GPL, include clauses which aim to limit
the jurisdiction, venue, or governing law for resolving disputes concerning the
license [8, p 218]. Jurisdiction determines which courts have the power to the
decide the case, such as US federal courts. The venue determines the particular
location of the court, such as the US District Court of the Southern District of
California, in San Diego, California. And the governing law determines which law
shall be applied to decide the legal issues of the case. Usually the governing law
will be the law of the jurisdiction of the court which decide the case, but this is not
always the case. Sometimes courts need to be apply the law of other jurisdictions,
possible even the law of other countries. For example, the Open Software License
(OSL) allows an action to be brought in the courts of the jurisdiction where the
licensor resides, wherever this may be, but requires US copyright law, “the
equivalent laws of other countries” and international treaties to be applied to
determine penalties.

What about the dependency of the policy modelling tool on the Google Web
Toolkit (GWT)? The GWT is a library for the JVM for creating interactive web
applications using the asynchronous JavaScript and XML programming paradigm

4http://creativecommons.org/about/licenses/meet-the-licenses
QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 15 of 31

(AJAX). The GWT allows the graphical user interface of a web application to be
implemented in Java, by compiling Java to JavaScript. At runtime, static HTML
pages containing JavaScript code are distributed from the web server hosting the
application to the user’s web browser. The GWT library is used only during the
development of the user interface, not at runtime. Is the JavaScript code
generated by the GWT library subject to the same license as the GWT library
itself? Although, the GWT library is licensed using the Apache license, which is an
academic license without a reciprocity condition, the Apache Software Foundation
has started to require contributors, i.e. persons who modify code licensed under
the Apache license, to enter an agreement which requires the author of the
modifications to enter an agreement with the Apache Software Foundation, giving
the Foundation the right to republish the modifications under any license it
chooses [8, p 93]. Is every program derived from code licensed using the Apache
template license a “contribution” subject to this condition? Does using the GWT
library to implement a user interface create a derivative work, modification or
contribution requiring the author of the program to make such an agreement with
the Apache Software Foundation or perhaps Google, the author and owner of the
GWT?

The legal issues raised by the other components of the argumentation toolbox are
similar. Interesting issues may be raised by the use of JavaFX by the argument
mapping tool, since the JavaFX runtime currently is licensed by Sun using a
proprietary licensed, as closed-source software. (The JavaFX compiler, however,
is licensed as Open Source software using the GPL, version 2.) The proprietary
license does not grant the right to distribute the JavaFx runtime. In practice this is
not likely to be a problem, since JavaFX programs can be distributed as applets
and Java WebStart applications, both of which are capable of downloading and
installing the required Java and JavaFx runtime environments from Sun’s own
servers automatically, on demand, the first time the user tries to run the program.
Since the JavaFX runtime is written in Java and runs on the JVM, one question is
whether Sun may be violating the GNU license of the its own JVM. But since Sun
is the owner of its own JVM, and the licensor of its GPL license, they are not
themselves bound by its GPL license conditions. They are free to use their own
JVM as the please, unconstrained by any licensing conditions. Moreover, since
the JVM has a standard specification, JSR 9245, which has been implemented
many times, software written for the JVM is not dependent on any particular JVM
implementation. The owner of each JVM implementation is free to choose its
licensing conditions, including proprietary, closed source ones.

5http://en.wikipedia.org/wiki/JVM
QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 16 of 31

4 SOURCES OF LAW

In the previous section, many potential Open Source licensing issues were
illustrated, using the argumentation toolbox example. We did not try to give a
definitive answer to any of these legal questions for several reasons. Such
questions can only be answered in the context of a particular legal jurisdiction,
and answering them would require advice from an attorney who is expert in the
law of this jurisdiction. Whatever these answers might be, they would be of only
limited relevance to readers in other jurisdictions. Thus our goal has been more
limited: to provide a high-level conceptual model of Open Source licensing issues
and some more-or-less concrete examples of the kinds of issues which may need
to be addressed by developers of Open Source software. The conceptual model
is based on US copyright law, since the most widely-used Open Source licenses
were written in the US and are thus informed by and based on US copyright law
and its concepts and terminology. When analysing Open Source licensing issues,
however, one must dig deeper and cannot interpret these licenses literally or
evaluate them independently of the legal tradition, positive law and jurisprudence
of the governing law of specific cases. In this section we provide an overview of
the sources of legal norms which should be taken into consideration when
analysing Open Source licensing issues, starting with but going beyond the literal
text of the licenses themselves.

Licenses and contracts provide a means for private individuals and companies to
regulate their own business affairs. Licenses are like little pieces of legislation,
which regulate the distribution of certain rights and obligations between the
licensor and licensee regarding original works of software owned by the licensor.
Thus the first source of legal norms for analysing licensing issues are the licenses
themselves. But Open Source licenses, like legislation, change over time. There
are different versions of popular Open Sources licenses in use. For example, the
current version of the GPL is version 3. When several versions of a license have
been published, it may not also be apparent which version applies to a particular
piece of software. The license itself may provide licensees with the option to use
newer versions of the license for derivative works. For example, section 14 of
version 3 of the GPL states:

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of following
the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does
not specify a version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

But what if a work is derived from several components, each subject to different
versions of the GPL? Recall that works licensed using the GPL are not
sublicensable. Thus one may need to examine all programs along the chain of
title to find out, for each modification, whether the owner of the modification
intended to allow his derivative work to be licensed by a specific version of the
GPL or any later version. This also raises the issue of which version of the GPL
must be applied to software which is derived from more than one program, when

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 17 of 31

these programs use different, specific versions of the GPL, in order to satisfy the
reciprocity conditions of each of the GPL licenses.

Again, it is not sufficient to interpret licenses literally. They must be interpreted
against the background of the legal tradition, positive law and jurisprudence of the
law governing the license. Usually this will be the law of the jurisdiction in which a
case would be brought before a court to resolve legal conflicts concerning the
license. For example, the reciprocity condition of Version 3 of the GPL is stated in
its Section 5, as follows:

5. Conveying Modified Source Versions. You may convey a work based on
the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also
meet all of these conditions: ... The work must carry prominent notices
stating that it is released under this License ... You must license the entire
work, as a whole, under this License to anyone who comes into possession
of a copy. ... (Emphasis added.)

So, on the face of it, the reciprocity condition of the GPL applies both to works
“based on” the licensed software and to works which result from “modifications” to
the licensed software. But the definitions section of the GPL makes it clear that a
work is based on an earlier work only if it is a modified version of this earlier work:

To “modify” a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a “modified version” of the earlier work or
a work “based on” the earlier work.

But “modified version” is not a legal term in US copyright law. Rather, US
copyright law uses the term “derivative work”, which is defined in 17 U.S.C. § 101
as follows:

A “derivative work” is a work based upon one or more preexisting works,
such as a translation, musical arrangement, dramatization, fictionalization,
motion picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which a work may be recast,
transformed, or adapted. A work consisting of editorial revisions,
annotations, elaborations, or other modifications which, as a whole,
represent an original work of authorship, is a “derivative work”.

So, when US copyright law is the governing law, it may be necessary to interpret
the term “modified version” in the GPL in terms of the technical legal term,
“derivative work”, of 17 U.S.C. § 101. US copyright law gives the owner the
copyright the exclusive right to make derivative works, but unlike the GPL says
nothing explicitly about the making of modifications or works “based” on other
works. A license gives the licensee permission to exercise an exclusive right of the
licensor. If not all modifications are not derivative works, then those modifications
which are not derivative works arguably do not infringe on the licensor's exclusive
rights and would not require a license. What then is the precise relationship
between “modified version” and “derivative work”. Are they equivalent? Is one
term more general than the other, i.e. do one term subsume the other? If they are
not equivalent, is the reciprocity condition of the GPL binding on modified versions
which are not derivative works?

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 18 of 31

Does it make a difference whether the GPL is interpreted as a bare license or a
contract? If the GPL is interpreted as a bare license under US copyright law,
arguably it can only places conditions on the exercise by the licensee of exclusive
rights owned by the licensor. According to 17 U.S.C. § 106, these exclusive rights
are:

... the owner of copyright under this title has the exclusive rights to do and
to authorize any of the following: (1) to reproduce the copyrighted work in
copies or phonorecords; (2) to prepare derivative works based upon the
copyrighted work; (3) to distribute copies or phonorecords of the
copyrighted work to the public by sale or other transfer of ownership, or by
rental, lease, or lending; ...

The rights to perform and display works have been omitted from this quotation,
since these rights do not apply to software. Arguably, if the GPL is a bare license,
any conditions it places on actions which fall outside the exclusive rights of the
licensor would not be binding on the licensee. In particular, if the GPL’s concept of
“modifying” a work is broader than the legal meaning of “preparing derivative
works” under copyright law, then the GPL’s reciprocity conditions would only be
binding for those modifications which are derivative works. Similarly, if the
definition of “conveying” a work in the GPL is broader than concept of “distributing
copies” of copyrighted works in copyright law, then the reciprocity condition of the
GPL would only apply to conveyances which are distributions.

Consider also the linking issue. At the end of Version 3 of the GPL, but
significantly after its terms and conditions, in the section on “How to Apply These
Terms to Your New Programs”, there appears this paragraph:

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. ...

This is the only place in the GPL where linking is explicitly mentioned. But since it
appears after the terms and conditions of the license, it is not part of the legal
binding conditions of the license. Moreover, even if these paragraph were part of
the terms and conditions of the GPL, it does not tell us what it means to
“incorporate a program into proprietary programs” or “link proprietary applications
with a library”. If these actions do not prepare derivative works or distribute copies
of the copyrighted work, then they fall outside the exclusive rights protected by
copyright and no bare license. This raises the issue whether a bare license can
place conditions prohibiting actions which the licensee has a prior right to perform,
which do not require permission of the licensor. Can the conditions go beyond
limitations on the exercise of the exclusive rights of the licensor?

The situation may be different if the license is a contract and not just a bare
license. In general, the parties to a contract are free to make promises which go
beyond respecting conditions in return for permission to exercise exclusive rights.
The Free Software Foundation intends the GPL to be a bare license, not a
contract [7, pp 136-140]. Indeed, the GPL is the only popular Open Source license
which is not intended to be a contract [8, p 140]. But is the intent of the Free

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 19 of 31

Software Foundation relevant? Or is it rather the intent of the licensor and
licensee which counts when determining whether or not a contract has been
formed? Let us leave aside the question of whether or not the GPL can be a
contract. The important point for us here is that Open Source licenses are often
intended to be contracts by the parties, and most license templates have been
designed to be used as contracts.

If a party in a copyright dispute claims that a license is a contract, then contract
law, in addition to copyright law, becomes relevant. In the United States, copyright
law is federal law but contract law is state law. That is, the law of contracts is
somewhat different in each of the 50 states. But the situation is not as complex as
it may seem at first. The American Law Institute has published a jurisprudential
treatise called the “Restatement of Contracts” [5], which presents an abstract
model of US contract law, derived from an analysis of court decisions in contract
disputes throughout the United States. The model is presented in the form of
legislation, that is as a set of rules for the law of contracts. Although the
Restatement has the form of legislation, it is important to keep in mind that it is not
a primary source of law, such as legislation or court decisions, but rather a
secondary source of law, written by academic lawyers expert in the field of
contract law.6 Although the Restatement of Contracts is a very useful reference,
helpful for getting an overview of the US law of contracts, it is no replacement for
the primary legal sources, the statutes and court decisions of the governing law of
the relevant jurisdiction.

Also relevant in the US is the Uniform Commercial Code [11]. The Uniform
Commercial Code (UCC) is a federal law which aimed to harmonize the law of
commercial contracts in the 50 US states. But since contract law is state law in
the US, the UCC is not binding on the states but rather only serves as guidance
for the state legislatures. Some version of the UCC has been enacted by all 50
states. But the case law interpreting the UCC in each state, or rather the particular
version of the UCC enacted in each state, can in principle diverge. The decision of
a court in one state is not binding on decisions by courts in other states, but can
be influential. Thus the UCC is similar in some ways to a directive of the European
Union, which directs member states of the EU to enact legislation implementing
the directive. There is no guarantee, despite good faith efforts, that national laws
implementing the directive will have exactly the same meaning in each EU
member state. One possible difference between an EU directive and a US uniform
law is that the US states have no formal legal obligation to implement the uniform
law.

Whether or not the UCC is relevant for resolving Open Source licensing issues
will likely depend not only on whether the license is a contract, but whether the
contract is for the sale of goods. Thus important issue is whether software is or
can be a “good”. UCC § 2-103(k) defines goods as follows:

(k) “Goods” means all things that are movable at the time of identification to
a contract for sale. The term includes future goods, specially manufactured
goods, the unborn young of animals, growing crops, and other identified
things attached to realty as described in Section 2-107. The term does not
include information, the money in which the price is to be paid, investment

6In Germany, this kind of jurisprudential research is conducted in the field called “Rechtsdogmatik”.
QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 20 of 31

securities under Article 8, the subject matter of foreign exchange
transactions, or choses in action.

Is software a “movable thing”? Commonsense might seem to tell us that it is. But
if you buy Microsoft Word, for example, do you really buy the software, per se, or
rather a license giving you permission to use the software? Clearly Microsoft
retains its ownership of the software. It does not assign its ownership of
intellectual property rights to you when you buy a copy, otherwise Microsoft would
not be free to continue selling Word to others. Thus the question of whether
software is a good becomes whether a license to exercise some exclusive right, a
copyright, can be a good? Both software and licenses are quite intangible objects
compared to the kinds of things we usually consider to be goods, such as
automobiles, computers or television sets.

Another issue which must be resolved to determine whether the UCC applies,
besides whether software is a good, is whether the license was issued as part of a
commercial transaction. Typically, Open Source software is distributed free of
charge, but collections of Open Source software on some medium, such as a CD
or DVD, are often offered for sale. Are the licenses for the software in the
collection part of the commercial transaction, or does the commercial part of the
transaction only cover the sale of the medium, the CD or DVD?

We have been focusing in our discussion thus far on US law. In Europe of course
Open Source licensing issues typically would be resolved according to European
law. The European Union now has 27 member states, each with their own
national laws, including both common law countries (Cyprus, Ireland, Malta and
the United Kingdom) and civil law countries. Moreover the EU has 23 official
languages, which exacerbates the problem of interpreting Open Source licenses,
which are typically instances of license templates, such as the GPL, written in
English. The Free Software Foundation publishes translations of the GPL in
several languages, but these translations are considered “unofficial”.7 This
diversity of copyright laws is mitigated to some extent by international treaties and
efforts of the European Union to harmonize the copyright law of member states.
All member states ratified the 1886 Berne Convention for the Protection of Literary
and Artistic Works.8 Prior to the Berne Convention, national copyright laws usually
only applied to works authored within the country. Works authored in other
countries could be freely copied, modified or distributed without permission. The
protection of the interests of authors provided by the Berne Convention went
beyond the protection of economic interests provided by US copyright law at that
time to also cover the “moral rights” of authors.9

More recently, the European Union has issued a number of directives to its
member states in an attempt to harmonize copyright laws throughout the EU.10 Of
particular interest for software licenses is Council Directive 91/250/EEC of 14 May
1991 on the legal protection of computer programs.11 This directive protects the
same basic exclusive rights of copyright owners to copy, modify and distribute
7http://www.gnu.org/licenses/translations.html
8http://en.wikipedia.org/wiki/Berne_Convention_for_the_Protection_of_Literary_and_Artistic_Work
s
9The United States also ratified the convention, but not until 1989!
10http://en.wikipedia.org/wiki/Copyright_law_of_the_European_Union

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 21 of 31

software, similar to US copyright law, but defines some exceptions which limit
these rights in some situations. Licensees have the right to make any copies
necessary to use the software, the right to make any modifications necessary to
function properly, given its purpose, for example by fixing bugs, the right to make
back-up copies and, finally, the right to decompile the program if necessary to
ensure that the program is interoperable with other programs or devices. The
important thing to note here is that this European directive gives licensees these
rights even if the license itself does not grant these rights or, presumably, even if
the license explicitly tries to deny the licensee these rights. Council Directive
91/250/EEC has been implemented in most, perhaps all, member states of the
European Union, including France12 and Germany 13

The provisions of the European directive are reminiscent of the consumer
protection provisions of the Uniform Commercial Code. For example, UCC § 2-
314 states an implied warranty of merchantability for sales of goods by merchants
which essentially guarantees the buyer that the goods purchased are fit for the
purposes for which they were designed. In such cases, any clause of the sales
contract which attempts to exclude a warranty of merchantability is unenforceable.

The EU directive on the legal protection of computer programs and the UCC are
both examples of laws which can override the express conditions of a license or
contract. This illustrates that one cannot rely solely on the literal text of a license
or contract to determine the rights and obligations of the parties.

Council Directive 91/250/EEC was replaced this year by Directive 2009/24/EC to
consolidate minor amendments over the years.14 Just as template licenses like the
GPL can change over time, raising issues about which version of the license
applies to a derivative work, so to do statutes and case law evolve over time.
When analysing a legal case, timing issues can be difficult. The general rule is
that the law which was valid at the time of the events which give rise to the facts
of the case must be applied, not the law which is valid at the time of the court
proceedings to resolve the conflict. But these events can take place over any
period of time and in principal the law may have changed, perhaps even several
times, during the course of these events. In the case of new legislation, one must
distinguish the time which the statute was enacted by the legislature from the time
which the statute becomes effective and the period of time for which the statute is
applicable. Some laws are applicable retroactively. Some are applicable only for
some period of time in the future. Court interpretations of legislation apply
retroactively on the theory that the courts do not make law, but only interpret the
meaning of legislation already valid at the time in the past of the relevant events of
the case before the court. But since courts can interpret the language of statutes
in ways which surprise expectations, such interpretations may seem at times to be
in effect a change in the law.

Let us conclude this section by mentioning only briefly some general sources of
law, not specific to copyright issues, which nonetheless may be relevant in some
cases and therefore must be considered. The first is constitutional law, i.e. the
11http://en.wikipedia.org/wiki/Directive_on_the_legal_protection_of_computer_programs
12Loi no. 94-361 du 10 mai 1994, JORF du 11 mai 1994, p. 6863
13Zweites Gesetz zur Änderung des Urheberrechtsgesetzes vom 9. Juni 1993, BGBl I p. 910
14http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:111:0016:0022:EN:PDF

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 22 of 31

basic law of every jurisdiction. Which constitutions need to be considered
depends of course on the jurisdiction. Several may be relevant. Recall that
contract law is state law in the US. Thus, if the governing law of the case, for
contract issues, is the law of California, both the California State Constitution and
the US Constitution may be relevant. Similarly, for a case in Germany, the
constitution of the particular Germany Land, for example Brandenburg, as well as
the German constitution may be relevant.15

The European Union does not currently have a constitution, since the treaty of
2004 which produced a proposed constitution was not ratified by all 25 member
states. In the meantime, several European treaties need to be consulted, in
particular the Maastricht Treaty of 1993, which founded the European Union, and
the Lisbon Treaty of 2007, which amended all previous treaties after the proposed
constitution of 2004 failed to be ratified. The highest court with jurisdiction for
interpreting these treaties and deciding issues of European law is the European
Court of Justice, which was established in 1952.

Possibly also relevant is the European Convention on Human Rights, under the
auspices of the Council of Europe in 1950. The Convention also established the
European Court of Human Rights to protect persons from human rights violations.
The Convention is comparable to the US Bill of Rights, i.e. the first ten
amendments of the US constitution, the French Declaration of the Rights of Man
and the first part of the German Basic Law. Possibly of particular relevance for
copyright issues is Article 10 of the Convention, which protects the right of
“expression”:

Article 10 – Freedom of expression

1. Everyone has the right to freedom of expression. This right shall include
freedom to hold opinions and to receive and impart information and ideas
without interference by public authority and regardless of frontiers. This
article shall not prevent States from requiring the licensing of broadcasting,
television or cinema enterprises.

2. The exercise of these freedoms, since it carries with it duties and
responsibilities, may be subject to such formalities, conditions, restrictions
or penalties as are prescribed by law and are necessary in a democratic
society, in the interests of national security, territorial integrity or public
safety, for the prevention of disorder or crime, for the protection of health or
morals, for the protection of the reputation or rights of others, for preventing
the disclosure of information received in confidence, or for maintaining the
authority and impartiality of the judiciary.

Constitutions, treaties and conventions such as these generally state very broad
principles, not detailed rules with well-defined terms. Other sources of principles
may be recognized by courts, depending on the legal system. For example,
Common Law countries recognize principles of equity, such as the principle of
estoppel which, roughly speaking, expresses the idea that a person should not
profit from his own wrongdoing. Principles can play a role when courts decide
cases, even though they are not codified in statutes enacted by the legislative

15For historical reasons, the constitution in Germany is not called a constitution, but rather the
Basic Law (“Grundgesetz”).

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 23 of 31

branch of government. One issue is whether the enforcement of moral principles,
outside of positive law, is consistent with the liberal ideals of western
democracies. Are principals of natural law fundamental and universal and should
they be given priority over the positive laws of states?

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 24 of 31

5 LEGAL REASONING AND ARGUMENTATION

Now that we have identified and illustrated some Open Source license
compatibility issues, and collected some sources of legal norms that may be
relevant for resolving such issues in particular cases, let us turn in this section to
the question of how to use such legal sources to analyze the issues. Without
diving too deeply into legal theory, our aim here is to present a very high level and
brief overview of legal reasoning and argumentation, from the perspective of the
interdisciplinary field of Artificial Intelligence and Law. Research in this field builds
on results from both jurisprudence and computer science and pursues the goal of
building computational models of legal reasoning, for both theoretical and
practical purposes. In a later Qualipso technical report, models, methods and
tools developed in the AI and Law community will be presented and assessed with
regard to their applicability for providing support to developers with the kinds of
Open Source license compatibility issues. Here our aim is to present an overview
of legal reasoning tasks and relationships between these tasks, without saying
much about how these tasks could be supported with information technology.

Legal positivists, such as Hart [4], take the position that governing law of a
jurisdiction consists of a set of legal rules. Rules are of two kinds. The primary
rules represent the legal norms which regulate the legal relationships and activity
of citizens and other persons. The secondary rules represent procedural norms
which regulate the processes by which legislatures and courts construct, modify
and apply the primary legal rules. More concretely, secondary rules govern the
process by which courts identify the primary rules and apply them to decide legal
issues in particular cases. A simplistic conception of this process, not Hart’s,
disparagingly called mechanical jurisprudence, trivializes the task of identifying
the legal rules, as well as the facts of a case, and considers the application of
rules to cases to decided issues a straightforward, unproblematical application of
deductive logic. Mechanical jurisprudence fails to recognize or take seriously the
difficulties of interpreting legislation which are written in natural language, with all
its potential vagueness, ambiguities and imprecision. As Dworkin [2] however has
pointed out, legal sources such as legislation and case law need to be interpreted
to identify the legal norms, and interpretation is anything but a straightforward,
mechanical process. And many legal concepts are open textured [4] abstract
concepts which must be interpreted against the background of such things as the
legislative history, precedent cases and values of the relevant community when
trying to decide whether concrete, material facts of a particular case can be
subsumed under them. To illustrate with an example from copyright law: the
owner of a copyrighted work has an exclusive right to distribute copies of the
work. But what does “distribute” mean precisely? Is a copy of a program being
distributed when it is shared with friends or immediate family members? It is not
always clear how to answer such questions.

The mainstream view within the field of AI and Law is that legal reasoning involves
the construction, evaluation and comparison of alternatives theories of the law
and facts of the case. Typically this takes place in critical dialogues, during which
arguments pro and con the alternative theories are put forward by the parties.
When evaluating and comparing the alternative theories, the most coherent ones
should be preferred, but just what it means for a theory to be coherent is an open

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 25 of 31

theoretical issue. Some factors which are relevant for evaluating the coherence of
a theory have been put suggested, but there are not strict rules or formulas for
aggregating these factors. For example, one factor is how well the theory fits into
the prior body of case law. Another factor is the complexity of the theory. Following
the principle called Occam’s razor, simple theories are preferable to more
complex theories.

In this theory construction conception of legal reasoning, two or more theories can
be equally coherent. These theories can point in different directions, leading to
contradictory conclusions of the issues. Further arguments, for example from new
evidence or interpretations, may resolve these conflicts and lead to a unique, best
theory. But this still provides not guarantee a decision would be definitely correct if
taken at this time, on the basis of this theory. Given more time, if the dialogue is
allowed to continue, still further arguments might be found and put forward which
lead to still better theories. Thus, even if one accepts the idea that every legal
issue has one, definitely correct answer, in principal at least, in practice legal
procedures are imperfect. There is no objective method, independent of these
imperfect legal procedures, for checking whether a legal decision is correct.
Rather, in practice we have to live with some doubt and must be content with
merely presuming legal decisions to be correct, at least so long as there is no
evidence to the contrary.

The theory construction view of legal reasoning, in various forms, has been hinted
at numerous times. For example, Rawls [7] said:

General moral principals and judgments about the morality of specific acts
are constructed together, in an iterative process of mutual adaptation.

In German jurisprudence, Engisch [3] famously said:

One’s attention must shift back and forth (“Hin- und Herwandern des
Blickes”) between the evidence and legal sources when trying to subsume
facts under legal terms.

One of the founders of the field of computer science and law, Bing [1], wrote:

Legal reasoning is not primarily deductive, but rather a modelling process
of shaping an understanding of the facts, based on evidence, and an
interpretation of the legal sources, to construct a theory for some legal
conclusion.

Finally, this theory construction conception of legal reasoning was made very
explicit in the field of AI and Law by, among others, McCarty [6]:

Legal reasoning is a form of theory construction. … A judge rendering a
decision is constructing a theory of [the law and facts of] a case. … A
lawyer’s job is to construct a theory of the case too, and one that just
happens to coincide with his client’s interests.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 26 of 31

Figure 3 illustrates relations between different kinds of legal and factual issues, all
of which are resolved by argumentation. The plaintiff’s main claim is that the
defendant violated his copyright by giving his wife a copy of some software. This
claim is supported by an argument with two premises: the major premise,
asserting the rule that copyright owners have the exclusive right to distribute their
works, and the minor premise, expressing the antecedent of the rule, namely that
the defendant in fact distributed a copyrighted work. The propositional content of
the minor premise is called an ultimate fact, since it is expressed in the same
terms, and at the same level of generality, as the antecedents of the legal rule
being applied. That is, the ultimate facts are formulated using technical legal
terminology. Putting forward this argument does not by itself resolve the main
claim, that there was a copyright violation. On the contrary it raises two new
issues which need in turn to be resolved by argumentation: 1) Is the asserted rule
about distributing copies a valid legal rule? And 2) What did the defendant do,
more concretely, that is claimed to be a distribution of copies? For the first of
these issues, the claimed rule is backed [9] by putting forward an argument citing
the source of legal statute, 17 U.S.C. § 106. The plaintiff is arguing that the
claimed rule is a coherent interpretation of this section. Regarding the second
issue, about what the plaintiff is claiming the defendant did, more concretely,
which amounts to an illegal distribution of the copyrighted work, the plaintiff has
put forward an argument claiming that the defendant gave his wife a copy. When

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 27 of 31

Figure 3: Kinds of Legal and Factual Issues

the propositional content of a claim is relatively concrete, using everyday
terminology, rather than technical legal vocabulary, the proposition is called a
material fact. Calling ultimate facts and material fact “facts” does not mean that
they are undisputed or settled. In this context “fact” is a synonym for a proposition
about factual issues, as opposed to legal issues, independent of whether or not
the propositions are true, or presumably true. In our example, the claim of the
material fact, that the defendant gave his wife a copy, is at issue. The plaintiff has
supported this claim by putting forward yet another argument, this time by
providing evidence in the form of witness testimony for the ex-husband of the
defendant’s wife.

Arguments are typically enthymemes [10]. Some of the premises of the argument
are implicit. One way to attack an argument is to first reveal an implicit premise
and then to put forward an argument against (con) the premise. For example, an
implicit premise of the argument citing 17 U.S.C. § 106 is that this section of the
U.S.C. is still valid law and has not been modified or repealed before the relevant
events of the case. And an implicit premise of the argument from witness
testimony is that the witness is not biased. The defendant might want to reveal
this premise and challenge the witness in an argument which points out that an
ex-husband may be jealous and thus have a motive to try to harm the defendant,
who is the wife’s new husband. For a third example, an implicit premise of the
main argument is that the defendant did not have a license giving him permission
to distribute the software. Thus the defendant might consider countering this
argument by claiming that he has a license.

There are various ways to attack arguments: by attacking a premise, by putting
forward an argument, called a rebuttal for a contrary conclusion or a conclusion,
or by undercutting the argument with an argument claiming that the rule of its
major premise does not apply in this case. For an example of an undercutter,
imagine an argument applying an exclusionary rule stating that 17 U.S.C. § 106
does not apply to software, or to noncommercial distributions.

The process of making claims, putting forward arguments and deciding issues is
regulated by rules of procedure. These procedural rules regulate, among other
things, the distribution of the burden of proof among the parties and the proof
standard, such as the civil law preponderance of evidence standard for resolving
issues.

At some point in the proceeding, after all the evidence has been heard and all of
the arguments have been made, the arguments will have to be evaluated. In legal
trials, this is done by judges and, in some legal systems, juries. In the US, if there
is a jury, the trial judge is responsible for deciding legal issues and the jury is
responsible for deciding only factual issues. In theory, both the legal and the
factual issues are resolved by evaluating the theories put forward by the
arguments in the case and comparing their coherence. For the factual issues, one
way of judging coherence is to evaluate which theory of the facts makes the
plausible story, given common sense knowledge of how people normally behave
and the world typically works. For the legal issues, the judge is not bound by the
legal theories put forward by the parties but may choose to construct his own
theory of the legislation and precedent cases and then decide which of the rules
put forward by the parties are members of his preferred theory.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 28 of 31

Thus far in this section we have been discussing how arguments are used in legal
trials, to resolve a dispute. The scenario we presented in Section 2, about the
Open Source license compatibility issues faced by the developers of an
argumentation toolbox, is somewhat different. The scenario is an example of a
legal planning problem, where the task is to anticipate the legal consequences of
alternative courses of action, so as to try to avoid legal conflicts down the road.
Nonetheless, argumentation plays a role. The planner needs to try to imagine
potential legal issues and then search for arguments on both sides, simulating a
dialogue by alternating between the plaintiff (pro) and defendant (con) roles and
using arguments to construct and critically test theories for both sides.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 29 of 31

6 CONCLUSION

In this report we have illustrated some license compatibility issues which
developers must face when combining components subject to different licenses,
using an argumentation toolbox currently being designed as an example, and
have surveyed the kinds of legal sources, such as statutes, case law and legal
principles, which must be taken into consideration when analysing these issues.
We have seen that Open Source license compatibility issues cannot be analyzed
in the abstract, but must be analyzed in the light of the particular material facts of
a case and the legal norms of the applicable jurisdiction.

In the law, in practice there is never a uniquely right answer to some legal issue.
Even if one takes the position that in principal there must be one right answer, in
practice reasonable people can and will disagree about what this answer should
be. Good arguments can always be made on both sides of any issue. Deciding
legal issues requires good judgement, not just good logic. Legal problems are not
well-formed and thus cannot be fully automated. Legal reasoning is a creative,
synthetic process involving the construction, evaluation and comparison of
theories. While formal, analytical methods can be useful for analysing the logical
consequences of these theories, no formal method can generate all possible
theories, since the search space of theories is not enumerable. This nature of
legal reasoning leads to some necessary uncertainty and risk which cannot be
entirely eliminated. This is as true for Open Source software development as for
any other activity regulated by law.

In our next report we will survey methods from the field of Artificial Intelligence and
Law to try assess their usefulness for building software tools which can help
developers, or perhaps their attorneys, to construct and explore the space of legal
arguments about Open Source license compatibility issues. The goal is not to
build an intelligent system which can answer questions about Open Source
license compatibility issues in a fully automatic way, but rather to develop tools
which can help humans to analyse license compatibility issues more efficiently
and more thoroughly.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 30 of 31

REFERENCES
[1] Jon Bing. Uncertainty, decisions and information systems. In C. Ciampi, editor,

Artificial Intelligence and Legal Information Systems. North-Holland, 1982.
[2] Ronald Dworkin. Taking Rights Seriously. Harvard University Press, Cambridge, MA,

1977.
[3] K. Engisch. Logische Studien zur Gesetzesanwendung. C. Winter, 1960.
[4] H. L. A. Hart. The Concept of Law. Clarendon Press, Oxford, 1961.
[5] American Law Institute. Restatement (Second) of Contracts. 1981.
[6] L. Thorne McCarty. Some arguments about legal arguments. In International

Conference on Artificial Intelligence and Law, pages 215–224, Melbourne, 1997.
[7] John Rawls. Outline of a decision procedure for ethics. Philosophical Review, pages

177–197, 1951.
[8] Lawrence E. Rosen. Open source licensing: Software freedom and intellectual

property law. Prentice Hall Professional Technical Reference, Upper Saddle River,
New Jersey, USA, 2004.

[9] Stephen E. Toulmin. The Uses of Argument. Cambridge University Press, Cambridge,
UK, 1958.

[10]Douglas Walton. Fundamentals of Critical Argumentation. Cambridge University
Press, Cambridge, UK, 2006.

[11]James J. White and Robert S. Summers. Handbook of the Law Under the Uniform
Commercial Code. West Publishing Co., 1980.

QualiPSo • 034763 • DX.Y.Z • Version X, dated dd/mm/yyy • Page 31 of 31

	Executive Summary
	 Table of Contents
	1 Introduction
	2 Scenario
	3 License Concepts and Issues
	4 Sources of Law
	5 Legal Reasoning and Argumentation
	6 Conclusion
	References

